解析学1 解答例

2017.11.24

 \blacksquare n は $n \geq 2$ をみたす自然数とする. 任意の複素数 $x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n$ に対して

$$\sum_{j=1}^{n} |x_j| |y_j| \le \sqrt{\sum_{j=1}^{n} |x_j|^2} \sqrt{\sum_{j=1}^{n} |y_j|^2}$$

が成り立つことを示せ.

(解) 複素ベクトル $\mathbf{v}=(v_j)$ の大きさ $\|\mathbf{v}\|$, 複素ベクトル $\mathbf{v}=(v_j)$ と $\mathbf{w}=(w_j)$ の内積 $\mathbf{v}\cdot\mathbf{w}$ を

$$\|\mathbf{v}\| = \sqrt{\sum_{j=1}^{n} |v_j|^2}, \quad \mathbf{v} \cdot \mathbf{w} = \sum_{j=1}^{n} \overline{v_j} w_j$$

により定義すると、 $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$ が成り立つ。第 j 要素が $|x_j|$, $|y_j|$ であるベクトルをそれぞれ \mathbf{x} , \mathbf{y} とすると、

$$\mathbf{x} \cdot \mathbf{y} \le ||\mathbf{x}|| ||\mathbf{y}||$$

を示せばよい. また, $\mathbf{x} \cdot \mathbf{y} \ge 0$, $\|\mathbf{x}\| \ge 0$, $\|\mathbf{y}\| \ge 0$ であることにも注意したい.

まず、 $\mathbf{x} = \mathbf{0}$ または $\mathbf{y} = \mathbf{0}$ のときには、 $\|\mathbf{x}\| = 0$ または $\|\mathbf{y}\| = 0$ であり、 $\mathbf{x} \cdot \mathbf{y} = 0$ が得られるので、示すべき不等式が成り立つ。

次に, $\mathbf{x} \neq \mathbf{0}$ かつ $\mathbf{y} \neq \mathbf{0}$ の場合, つまり, $\|\mathbf{x}\| > 0$ かつ $\|\mathbf{y}\| > 0$ の場合について考える. 任意の $t \in \mathbb{R}$ に対して

$$0 \le \|\mathbf{x} + t\mathbf{y}\|^2 = (\mathbf{x} + t\mathbf{y}) \cdot (\mathbf{x} + t\mathbf{y})$$
$$= \mathbf{x} \cdot \mathbf{x} + 2t\mathbf{x} \cdot \mathbf{y} + t^2\mathbf{y} \cdot \mathbf{y} = \|\mathbf{x}\|^2 + 2t\mathbf{x} \cdot \mathbf{y} + t^2\|\mathbf{y}\|^2$$

であるから,

$$(\mathbf{x} \cdot \mathbf{y})^2 - \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 \le 0, \qquad \supset \sharp \ \emptyset, \quad \mathbf{x} \cdot \mathbf{y} \le \|\mathbf{x}\| \|\mathbf{y}\|^2$$

が成り立つ.

以上から、任意の複素数 x_1 , x_2 , \cdots , x_n , y_1 , y_2 , \cdots , y_n に対して、示すべき不等式が成り立つ.