解析学1 解答例

2016.11.22

■ $w_1+w_2+\cdots+w_N=1$ をみたす点 $(w_1,w_2,\cdots,w_N)\in\mathbb{R}^N$ の範囲で, $z=w_1^2+w_2^2+\cdots+w_N^2$ の最小値,および,その最小値を取る点 (w_1,w_2,\cdots,w_N) を求めよ.

(解) 点

$$\mathbf{w}_0 = \left(\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}\right) \in \mathbb{R}^N$$

は $w_1 + w_2 + \cdots + w_N = 1$ をみたし,

$$\sum_{k=1}^{N} \left(w_k - \frac{1}{N} \right)^2 = \sum_{k=1}^{N} w_k^2 - \frac{2}{N} \sum_{k=1}^{N} w_k + \frac{1}{N^2} \sum_{k=1}^{N} 1 = \sum_{k=1}^{N} w_k^2 - \frac{1}{N}$$

より

$$z = \sum_{k=1}^{N} w_k^2 = \sum_{k=1}^{N} \left(w_k - \frac{1}{N} \right)^2 + \frac{1}{N}$$

である。したがって、z の最小値は 1/N であり、その最小値は点 \mathbf{w}_0 で取る。 \blacksquare